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Abstract—Humans can understand event roles like agent
and patient within videos of simple shapes moving around
just using simple motion heuristics. As existing computational
systems do not directly address human understanding of these
events, we develop the first computational model that can
simulate human performance in these tasks. We develop an
approach heuristic that can simulate how human recognition
of chasing is influenced by the angle that the chaser uses to
approach the chasee. We also created a causality heuristic that
captures human sensitivity to contact between the pusher and
the pushee, as well as a delay in launching. Careful modelling of
psychological studies of infants and adults behaviour can yield
insights that may enhance computational systems for action
understanding.
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I. INTRODUCTION

An important sub-problem of visual action recognition

[1] is identifying the roles of individuals in interactions

with multiple individuals when viewed from a distance

camera (e.g., overhead CCTV), where body parts and de-

tailed appearance-based features are difficult to extract. For

example, Moreno and Poope who developed a system to

identify the role of tagger and runner within simulated

games of tags with circles representing individuals [2]. A

common approach has been to develop heuristics that encode

the relational motion between individuals and using those

heuristics in various combinations to predict actions like

chasing [3]. Since these cues are not highly appearance

or perspective dependent, these kinds of systems should be

able to generalize easily to novel real world scenes.

What is less well understood at the moment is how to

develop appropriate motion heuristics that will encode the

right kinds of relational features that can be combined in

various ways to encode various types of actions. One avenue

for examining this question is to model the processes that

humans use to encode actions. This work has suggested that

human have fairly complex relational features. For example,

Gao et al. [4] had human participants identify a wolf circle

out of an array of 4 sheep circles that all moved around

randomly and participants could identify the wolf based on

its angle of approach towards the sheep that it was chasing.

This computation requires that the direct path between the

wolf and the sheep is computed and then angle of the

wolf’s motion is computed relative to this direct path. Thus,

humans predict the agent of chasing using relatively complex

relational features that are not some simple combination of

lower level features like velocity.

Another implication of psychological work is that many

complex heuristics appear to be innate (e.g., infants un-

derstand chasing [5]). Leslie and Keeble [6] found that

6-month infants could distinguish causal and non-causal

pushing actions. They were sensitive to whether the pusher

made contact with the pushed object and also when there

was a delay between the contact and the launch of the pushed

object. This suggests that there is a relational heuristic,

which is sensitive to immediate contact-based causal push-

ing, and this is not something that can be trivially trained

with various non-relational motion features. Furthermore,

the fact that this ability appears so early in development

suggests that these features are not trained, but rather are part

of the innate abilities of the human brain. In this work, we

develop a computational system that uses heuristics that are

similar to those in previous work, but we evaluate this system

against human data to better understand the computational

properties of these heuristics.

II. DEVELOPING HEURISTICS TO EXPLAIN HUMAN

ACTION UNDERSTANDING

To develop a system that closely mirrors our understand-

ing of thematic role action recognition, we focused on data

from one study on chasing and another on causal pushing.

The chasing study is a study by Gao et al. [4], which used

a multiple objects tracking paradigm, where participants

view scenes with multiple identical objects that are moving

randomly. Pylyshyn and Storm [7] found that humans can

track the identity of the objects as they move around, even

though they were all identical in shape and colour, and they

suggested that they had pointers that would attach to each

object and record information associated with that object.

Gao et al.’s [4] chasing study used 5 circles that moved

around randomly, but one of the circles (the wolf ) moved

towards another circle (the sheep). The wolf ’s angle of

motion toward the sheep was called its chasing subtlety and

they varied it from 0° to 150° in 30° increments. When

the chasing subtlety was 0°, the wolf was moving directly

towards the sheep in each frame and that made it easy to
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Figure 1. Chasing angle of motion or subtlety.

identify the wolf. When the chasing subtlety was higher,

it became more difficult to identify the wolf and chasing

accuracy became lower (human performance in Fig. 2). To

examine this, we first generated chasing videos with various

chasing subtlety and then created a heuristic that when

applied to these videos could identify the wolf in a way

that mirrored human accuracy.

A. Generating Chasing Events

The chasing videos had four identical circles. Most of

the circles moved randomly during the entire video and this

was done by changing the direction of motion randomly

in every 5 frames. Two circles were specified as the wolf
and the sheep. The wolf moved towards the sheep at a

chasing subtlety angle that was specific for each video. For

example, let at (t − 1)th frame Pt−1 and Qt−1 are the

position of wolf and sheep respectively (Figure 1). If the

wolf is chasing the sheep at subtlety θ, then at tth frame

the positions of the wolf Pt makes an angle θ at Pt−1 with

Qt−1, i.e. ∠PtPt−1Qt−1 = θ. The sheep always tried to

keep maximum distance from the wolf by moving toward the

direction
−−−−−−→
Pt−1Qt−1. For our experiment, we have generated

100 videos for each different chasing subtlety(θ) of 0°, 30°,
60°, 90°, 120° and 150°. In the next subsection, we describe

our heuristics for wolf and sheep detection in these chasing

videos.

B. Heuristics for Identifying Chaser in Chasing Events

To identify chasing in these videos, we have computed an

approach heuristic which was similar to the chasing subtlety

used in the generation of the videos. In generation, subtlety

was only computed from the wolf to the sheep, but in test,

we do not know which circles are involved in the chasing,

so the approach heuristic is computed between all pairs of

circles separately in both directions (approach for A to B is

not the same as approach for B to A). If chasing subtlety

is computed on each frame, then there will be many false

alarms as there are many frames where one circle is moving

directly towards another circle accidentally as a product of

random motion. Thus, we also assume that our heuristic is

aggregated over time with a hysteresis parameter that allows

us to identify consistent goal-directed chasing behavior.

To compute the approach heuristic, we applied a Kalman

filter [8] based tracking algorithm so that the identity of

each circle was maintained across the frames of the video.

Let for each circle Oi, we had its velocity of motion Vi.

We also could compute the direction of motion Dij of ith

circle towards jth circle. Using Vi and Dij , we computed

the chasing subtlety Cij for circle Oi towards the circle Oj .

To compute the approach heuristic Aij , we combined the

chasing subtlety Cij for time t with the previous approach

heuristic Aij at time t−1 using a hysteresis (H) value. This

was done so that chaser must show a consistent intention to

follow the chasee for the angle of motion heuristic to become

large. Since this heuristic is not symmetric, the heuristic was

computed for each pair of circles Oi and Oj . The smallest

overall heuristic value at the end of the trial was identified

and the first index identified the wolf in the event. This

algorithm was applied to all 100 videos for each chasing
subtlety and proportion where the identified wolf matched

the ground truth wolf (accuracy) was calculated.

C. Chasing Results

Fig. 2 shows the average accuracy for each level of

chasing subtlety for the human data [4] and the model with

different values of hysteresis (H = 0.9, 0.93, 0.95, 0.97,
0.99, 0.991, 0.995, and 0.999). The results show that the

approach hysteresis has a non-linear interaction with chasing

subtlety, and the closest match with the human data is a

hysteresis (H) value of 0.97.

To evaluate the model against human behavior, our goal is

to capture the way that human behavior changes with chas-
ing subtlety. There is no gold-standard, because judgments

of chasing are not categorical. Instead we ask whether the

decline in chasing labeling in the model with hysteresis of

0.97 is related to the increase in chasing subtlety angle in

a way that mirrors the way that these variables are related

in humans. Therefore, we applied a regression to the per-

centage chasing with chasing subtlety and participant type

crossed (human, model). The percent of videos labeled as

chasing was negatively reduced by subtlety, β = −0.5252,
t(8) = −4.7, p < 0.002. But there was no effect of type or

interaction of type (p = 0.8) and subtlety (p = 0.4), which

means that human and model data were similar.

This test demonstrated that it is possible to fit human wolf
identification accuracy across a range of chasing subtlety
by using a relational approach heuristic that aggregated

information across frames to provide information that would

support a judgment about the wolf in the scene.

III. UNDERSTANDING CAUSAL PUSHING EVENTS

The second study examines causal pushing events in the

work by Leslie and Keeble [6] and Cohen and Oakes [9],

who found that six-month old infants could recognize causal-

ity in pushing events, where the pusher’s contact with the

pushee leads to an immediate launching of the pushee.
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Figure 2. Chasing results with different hysteresis.

They distinguish this immediate contact event from events

where launching is less causal due to a lack of contact

or a delay in launching. This suggests that humans have

an innate heuristic that supports understanding of causality

in these events. We explore the nature of this heuristic by

generating a range of pushing events and then test heuristics

for identifying causal launching.

A. Generating Pushing Events

For pushing video, we start with nine randomly placed

identical circular objects that are randomly moving with a

constant velocity. After this random motion, the objects stop

and the pushing object moves towards the pushee object.

When they contact, the pusher stops and the pushee moves

away from the pusher. After about 100 milliseconds, all

of the objects resume random motion. To include different

variation within a pushing we impose some constraints on

the pusher and the pushee are as follows:

• pushing subtlety or angle (PAN): the angle of the

pushee movement with respect to the pusher after

pushed – 0°, 30°, 60°, 90°. Lower angles indicate that

the pushee’s movement matches the pusher’s approach

and this supports a causal interpretation.

• pushing delay (PDL): the delay between the pusher and

the pushee movement during pushing – three different

0, 10 and 20 (in frames). Less delay suggests that the

pusher’s energy is directly transferred to the pushee and

this supports a causal interpretation.

• pushing distance (PDS): the distance between the

pusher and the pushee during pushing – 0, 10 and 20
(in pixels). Lower distance means that the pusher and

the pushee are more likely to contact and this helps to

make the interaction appear more causal.

We created 100 videos for each combination crossing

the levels of pushing subtlety, pushing delay, and pushing
distance.

B. Heuristics for Identifying Pushers in Pushing events

In each pushing video, circular objects were tracked in

the same manner as in the chasing videos. Let us consider

Pi,t be the position of the ith object Oi at tth frame.

We calculate a pushing score for each pair of object Oi

and Oj at each frame of the video based on their tracked

position information. First, we calculate the stationary time

of each object at each frame by calculating the frame wise

displacement d(Oi,t−1, Oi,t) of that object. The stationary

time (ST) of an object Oi at tth frame (STt(Oi)) is defined

as:

STt(Oi) =

{
STt−1(Oi) + 1 if d(Oi,t−1, Oi,t) = 0

0 otherwise
(1)

Where d(Oi,t−1, Oi,t) is positional euclidean distance

of the object Oi between (t − 1)th and tth frame

and ST0(Oi) = 0. We define a pushing delay score
(PDLSt(Oi)) of an object Oi at tth frame as

PDLSt(Oi) = exp(−STt(Oi)) (2)

Similarly, we define a pushing distance score
PDSSt(Oi, Oj) between the objects Oi and Oj is

defined as:

PDSSt(Oi, Oj)) = exp(−d(Oi,t, Oj,t)) (3)

From Equations (2) and (3) it is clear that, for 100%
pushing (PDL = 0 & PDS = 0) PDLSt(Oi) and

PDSSt(Oi, Oj)) gives maximum value and low value for

other values of PDL & PDS.

In addition to PDLS and PDSS, we propose two

another terms for pushing action detection. In real world

pushing action, the pusher moves faster than the pushee
before the pushing happen and after pushing, pusher releases

his force to the pushee. So, the average velocity of the pusher
is greater than the same of the pushee just before the pushing

happens and vise versa just after the pushing. Based on

this observation, we propose two scores namely difference

of average speed before pushing (SBPSt(Oi, Oj)) and

difference of average speed after pushing (SAPSt(Oi, Oj))

between the two objects, Oi and Oj at tth frame is defined

as:

SBPSt(Oi, Oj) = exp
{− 1/(

t−τ∑
n=t

‖Vi,n‖ −
t−τ∑
n=t

‖Vj,n‖)
}
(4)

SAPSt(Oi, Oj) = exp
{− 1/(

t+τ∑
n=t

‖Vj,n‖ −
t+τ∑
n=t

‖Vi,n‖)
}
(5)

Where ‖Vi,t‖ is the magnitude of the velocity of Oi at tth

frame and τ is the threshold on the number of frames. From

Equations (4) and (5), it is clear that at pushing point(Oi

pushed Oj) both the score will be high and low on other

positions.
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Figure 3. Pushing results wit different pushing delay and contact distance
combination.

We calculate a pushing score PSt(Oi, Oj) between the

objects Oi and Oj at tth frame as:

PSt(Oi, Oj) = PDLSt(Oj)× PDSSt(Oi, Oj)×
SBPSt(Oi, Oj)× SAPSt(Oi, Oj)(6)

and the final causality heuristic CH(Oi, Oj) between ob-

jects Oi and Oj in a video can be calculated by summation

over all frames within that video using Equation (6) as:

CH(Oi, Oj) =
T∑

t=0

PSt(Oi, Oj) (7)

C. Pushing Results

We have tested our above proposed causality heuristics
on 100 videos for each pushing constraint combinations

and averaged over all pushing subtleties. Fig. 3 shows the

results for each combination of pushing delay and pushing

distance. To examine whether the model’s behavior matches

the human data, we applied a regression to the percentage

pushing with delay and distance at contact crossed. The

percent of videos labeled as pushing was negatively reduced

by delay, β = −4.78928, t(5) = −18, p < 0.001, and it was

negatively reduced by distance, β = −4.37822, t(5) = −17,
p < 0.001. Since accuracy could not go below 0, the floor

effect created a positive interaction of delay and distance,

β = 0.21, t(5) = 11, p < 0.001. Thus the model captured

features of Leslie and Keeble [6], where causality in pushing

events is reduced by a distance at contact and delay in the

launching of the pushee.

IV. DISCUSSION

The understanding the interactions of individuals at a

distance, where body part and appearance information is

difficult to reliably extract, is still a challenge for systems

of action understanding. Several approaches use supervised

learning using motion features related to the individuals

to develop systems that can label actions (e.g., chasing,

greeting) and roles (e.g., agent, patient). Here we use exper-

imental psychophysical data from humans to develop more

complex features for action understanding.

We developed an approach heuristic which encodes the

consistency in which one object approaches another object.

This heuristic is similar to Moreno and Poope’s system [2],

but it is graded, which captures the way that role labeling

varies systematically with chasing subtlety, such that lower

subtlety lead to higher accuracy chaser identification. The

slope of the change in accuracy with changes in chasing

subtlety matched human performance [4]. Another heuristic

that we developed was a causality heuristic that identified

causal pushing actions. The algorithm could explain the

sensitivity to contact and delay in the infant data [6].

Our claim is that the presence of complex graded rela-

tional heuristics in infants is evidence against a system which

uses supervised learning to acquire its ability to understand

actions from simple motion features (e.g., velocity). Instead,

we think these heuristics evolved specifically to support im-

portant survival functions (e.g., chasing predators or mates),

and computational systems for action understanding can

be improved by incorporating important heuristics that are

evident in the psychological literature.
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